SRT-100

2020年12月美国Sensus Healthcare正式授权Ekpac Healthcare(香港维昌医疗)为SRT-100中国大陆及香港地区的独家代理

  1. 医生

铁过载及铁死亡在瘢痕疙瘩成纤维细胞中的作用及机制



铁过载及铁死亡在瘢痕疙瘩成纤维细胞中的作用及机制

龚玲 李宇 李明轩 马娟 迟宏羽 董祥林

 

本文来源:《中华整形外科杂志》2023年12月 第39卷 第12期

DOI:10. 3760 / cma.j.cn114453-20230224-00041

作者单位:1新疆医科大学第一附属医院整形科, 乌鲁木齐830011;2新疆医科大学第一附属医院胸外科, 乌鲁木齐830011

通信作者:董祥林,Email:dongxianglin8@163.com

引用本文

龚玲,李宇,李明轩,等. 铁过载及铁死亡在瘢痕疙瘩成纤维细胞中的作用及机制[J]. 中华整形外科杂志,2023,39(12):1299-1310.

DOI:10.3760/cma.j.cn114453-20230224-00041


【摘要】 

目的 了解瘢痕疙瘩与正常皮肤组织中铁含量及转铁蛋白受体1(TfR1)表达水平,在体外构建Erastin诱导的瘢痕疙瘩成纤维细胞(KFB)铁死亡模型,检测Erastin和铁抑制素-1(Fer-1)对细胞活力、亚铁离子(Fe 2+)含量及脂质过氧化物、铁死亡和纤维化相关调节因子的影响。

方法 收集2022年3至6月新疆医科大学第一附属医院6例瘢痕疙瘩组织与6例包皮组织,采用组织铁含量试剂盒测定2种组织真皮层中铁含量,Western blotting法检测2种组织中TfR1蛋白表达情况。采用组织块培养法获取原代KFB和正常皮肤成纤维细胞(NFB),使用Erastin诱导KFB铁死亡模型并用CCK-8法检测不同浓度的Erastin和Fer-1对细胞活性的影响,筛选合适的药物浓度。后续实验分为5组:NFB组、control组、Erastin(0.6 μmol/L)组、Fer-1(1 μmol/L)组、Erastin(0.6 μmol/L)+Fer-1(1 μmol/L)组,其中后4组采用KFB作为实验对象;采用划痕实验检测细胞迁移能力,荧光探针法和试剂盒检测各组细胞中丙二醛(MDA)、活性氧(ROS)和Fe 2+含量;Western blotting法检测各组细胞中TfR1、谷胱甘肽过氧化物酶4(GPx4)、溶质载体家族7成员11(SLC7A11)、α-平滑肌肌动蛋白(α-SMA)、Ⅰ型胶原蛋白(COL-1)表达水平,免疫荧光检测KFB中TfR1、Gpx4蛋白表达及定位情况。采用GraphPad Prism 9.0统计软件,计量资料以x±s表示,2组间比较采用独立样本 t检验,多组间比较采用单因素方差分析,组间两两比较采用LSD- t检验。P<0.05表示差异具有统计学意义。

结果 与正常皮肤组织比较,瘢痕疙瘩中的铁含量及TfR1蛋白表达均明显较高( P<0.01)。不同浓度Erastin处理的KFB增殖率逐渐下降,IC 50为0.61 μmol/L,Fer-1在0.1~20 μmol/L对KFB无明显毒性。划痕实验显示,control组迁移率显著高于NFB组( P<0.01);与control组相比,Erastin干预后KFB迁移率明显下降( P<0.01);与Erastin组相比,Erastin+Fer-1组KFB迁移明显加快( P<0.01)。control组ROS、MDA水平显著高于NFB组( P<0.01);与control组相比,Erastin组ROS、MDA水平及Fe 2+含量显著升高( P<0.01),而Fer-1组ROS、MDA水平和Fe 2+含量显著降低( P<0.05);与Erastin组相比,Erastin+Fer-1组MDA、ROS水平及Fe 2+含量均显著降低( P<0.01)。Western blotting显示,与NFB组相比,control组铁死亡指标SLC7A11、GPx4蛋白表达明显减少( P<0.01),TfR1蛋白表达增加( P<0.01),纤维化指标α-SMA、COL-1蛋白表达显著增加( P<0.01);与control组相比,Erastin组SLC7A11表达减少( P<0.01),TfR1、COL-1表达增加( P<0.01),而Fer-1组SLC7A11、GPx4表达增加( P<0.01),TfR1、α-SMA、COL-1表达显著减少( P<0.01);与Erastin组相比,Erastin+Fer-1组GPx4、SLC7A11表达增加( P<0.01),TfR1、α-SMA、COL-1表达显著减少( P<0.01),提示Fer-1能够逆转Erastin诱导的KFB铁死亡和促纤维化作用。免疫荧光显示,GPx4在细胞核及细胞质中均有表达,与control组相比,Fer-1增加了KFB中GPx4的荧光强度( P<0.01);与Erastin组相比,Erastin+Fer-1组中GPx4的荧光强度显著增加( P<0.01);TfR1主要在细胞质中表达,与control组相比,Erastin增加了KFB中TfR1的荧光强度( P<0.05),而Fer-1组中TfR1荧光强度显著降低( P<0.01);与Erastin组相比,Erastin+Fer-1组TfR1荧光强度显著降低( P<0.01)。

结论 瘢痕疙瘩中铁过载且游离铁增多,Erastin可诱导KFB铁死亡并加重瘢痕疙瘩纤维化,Fer-1可逆转Erastin诱导形成的氧化损伤及铁蓄积,有效抑制KFB发生铁死亡和瘢痕疙瘩纤维化。

【关键词】瘢痕疙瘩;成纤维细胞;铁死亡;铁过载;活性氧;脂质过氧化

基金项目: 新疆维吾尔自治区青年基金项目(2019DOIC308);新疆维吾尔自治区自然科学基金项目(2023D01C101)

 

The role and mechanism of iron overload and ferroptosis in keloid fibroblasts

Gong  Ling1, Li  Yu1, Li  Mingxuan2, Ma  Juan1, Chi  Hongyu1, Dong  Xianglin1

1Department of Plastic Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; 2Department of Thoracic Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China

 

Corresponding author: Dong Xianglin, Email: dongxianglin8@163.com 

 

  【Abstract

Objective To investigate the iron content and transferrin receptor 1 (TfR1) expression levels in keloid and normal skin tissues. Erastin induced ferroptosis model of keloid fibroblasts (KFB) is constructed in vitro, and the effects of Erastin and Ferrostatin-1 (Fer-1) on cell viability, ferrous ion (Fe 2+ ) content and lipid peroxidation, ferroptosis and fibrosis-related regulatory factors are examined.

Methods Six keloid tissues and six prepuces were collected from the First Affiliated Hospital of Xinjiang Medical University from March to June 2022. The tissue iron content kit was used to determine the iron content in the dermis, and TfR1 protein expression level was detected by Western blotting. Primary KFB and normal skin fibroblasts (NFB) were obtained by tissue cultivation, Erastin-induced KFB ferroptosis model and CCK-8 assay were used to detect the effects of different concentrations of Erastin and Fer-1 on cell viability, and to screen the appropriate drug concentration. The subsequent experiments were divided into five groups: NFB group, control group, Erastin (0.6 μmol/L) group, Fer-1 (1 μmol/L) group, and Erastin (0.6 μmol/L) + Fer-1 (1 μmol/L) group. KFB was used in the last 4 groups. Cell migration ability was detected by scratch assay. The contents of malondialdehyde (MDA), reactive oxygen species (ROS) and Fe 2+ were detected by fluorescence probe and kits; the protein expression levels of TfR1, glutathione peroxidase 4 (GPx4), solute carrier family 7 member 11 (SLC7A11), α-smooth muscle actin (α-SMA) and type I collagen (COL-1) in each group of cells were detected by Western blotting; the protein expression and localization of TfR1 and Gpx4 in KFB were detected by immunofluorescence staining. GraphPad Prism 9.0 statistical software was used in the statistical analyses, and the measurement data were expressed as Mean±SD. Independent samples t-test was used for comparison between 2 groups, and one-way ANOVA was used for comparison between multiple groups, LSD- t test was used for pairwise comparison between groups. P<0.05 indicated statistical significance.

Results The iron content and TfR1 protein expression level were significantly higher in keloids compared with normal skin tissue ( P<0.01). The proliferation rate of KFB decreased as the Erastin concentration increased, the IC 50 was 0.61 μmol/L, and Fer-1 had no obvious toxicity to KFB in the range of 0.1-20 μmol/L. Scratch test showed that the migration rate of control group was significantly higher than that of NFB group ( P<0.01); compared with the control group, KFB migration rate decreased significantly after Erastin intervention ( P<0.01); compared with the Erastin group, KFB migration was significantly accelerated in the Erastin+ Fer-1 group ( P<0.01). Compared with the NFB group, ROS, MDA levels were significantly increased in the control group ( P<0.01); compared with the control group, ROS, MDA levels and Fe 2+ content were significantly higher in the Erastin group ( P<0.01), while ROS, MDA levels and Fe 2+ content were significantly lower in the Fer-1 group ( P<0.05); compared with the Erastin group, MDA, ROS levels and Fe 2+ content in the Erastin+ Fer-1 group were significantly decreased ( P<0.01). Western blotting results showed that, compared with the NFB group, ferroptosis indexes of SLC7A11 and GPx4 protein expression levels were significantly reduced ( P<0.01), TfR1 protein expression was increased ( P<0.01), and protein expression of fibrosis indexes, α-SMA and COL-1 were significantly increased ( P<0.01) in the control group; compared with the control group, Erastin group had reduced SLC7A11 expression ( P<0.01) and increased TfR1, COL-1 expression ( P<0.01), while SLC7A11, GPx4 expression increased ( P<0.01) and TfR1, α-SMA, COL-1 decreased ( P<0.01) in the Fer-1 group; compared with the Erastin group, the GPx4 and SLC7A11 expression levels were increased ( P<0.01) and TfR1, α-SMA, COL-1 expression levels were significantly decreased ( P<0.01) in the Erastin+ Fer-1 group, suggesting that Fer-1 was able to reverse the Erastin-induced ferroptosis and pro-fibrotic effects in KFB. Immunofluorescence staining showed that GPx4 was expressed in both the nucleus and the cytoplasm. Compared with the control group, Fer-1 increased the fluorescence intensity of GPx4 in KFB ( P<0.01). Compared with the Erastin group, the fluorescence intensity of GPx4 in Erastin+ Fer-1 group was significantly increased ( P<0.01). TfR1 was mainly expressed in the cytoplasm. Compared with the control group, Erastin increased the fluorescence intensity of TfR1 in KFB ( P<0.05), while Fer-1 group significantly decreased it ( P<0.01). Compared with Erastin group, the fluorescence intensity of TfR1 in Erastin+ Fer-1 group was significantly reduced ( P<0.01).

Conclusion Iron overload is present in keloids and the free iron level is increased. Erastin is able to induce ferroptosis in KFB and aggravate keloid fibrosis. Fer-1 can reverse the oxidative damage and iron accumulation induced by Erastin, and is able to effectively inhibit ferroptosis and keloid fibrosis in KFB.

【Key words】Keloid; Fibroblasts; Ferroptosis; Iron overload; Reactive oxygen species; Lipid peroxidation

 

Fund program: Youth Fund of Xinjiang Uygur Autonomous Region (2019DOIC308); Xinjiang Uygur Autonomous Region Natural Science Foundation Program (2023D01C101)

Disclosure of Conflicts of Interest: The authors have no financial interest to declare in relation to the content of this article.

Ethical Approval: Ethical approval was given by the Medical Ethics Committee of the First Affiliated Hospital of Xinjiang Medical University (K202303-03).

 

    瘢痕疙瘩是一种发生在受损皮肤中的良性纤维增生性疾病,在黄种人群中瘢痕疙瘩的发病率高达4.6%~16% [ 1 ],患者常常会出现局部灼热、疼痛、瘙痒、关节活动受限等症状,并且由于美观问题和功能障碍而影响生活质量。瘢痕疙瘩的主要临床表现为持续浸润性增殖超出伤口边缘和侵犯邻近组织、缺乏自发性消退、单纯手术切除后复发率极高,临床治疗十分困难,难以获得满意疗效 [ 2 ]。大量研究证实,不同类型的细胞死亡参与了瘢痕疙瘩的纤维化进程,特定的细胞死亡类型和靶细胞均可影响瘢痕疙瘩的形成,但至目前为止,影响瘢痕疙瘩发生发展的病理学机制尚未完全阐明。铁死亡是一种近年来被高度关注的铁依赖的程序性细胞死亡方式,其生化特征主要表现为铁依赖性氧化损伤、脂质过氧化和活性氧积累、胱氨酸/谷氨酸逆转运体(System Xc -)失衡从而导致谷胱甘肽(glutathione,GSH)合成减少、谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPx4)活性抑制等。发生铁死亡的细胞形态学特征为线粒体形态改变,但胞膜结构完整,细胞核大小正常无染色体凝聚 [ 3 ]。铁死亡受多种因素和机制的调控,包括铁、脂质、氨基酸的代谢及线粒体的活性等 [ 4 ]。铁死亡已被证明在多种纤维化疾病中发挥重要作用,越来越多的证据表明铁死亡在抑制器官纤维化方面具有潜在作用 [ 5 ]。然而截至目前,铁死亡在瘢痕疙瘩中的作用仍不明确,本研究旨在探究瘢痕疙瘩组织中的局部铁过载和铁死亡情况,拟通过特异性诱导和抑制瘢痕疙瘩成纤维细胞(keloid fibroblasts,KFB)的铁死亡,探讨其对瘢痕疙瘩纤维化的影响及可能作用机制,期望为相关机制研究及临床治疗提供新思路。

 

材料与方法

     一、标本来源

    收集2022年3至6月于新疆医科大学第一附属医院需要手术治疗的瘢痕疙瘩6例患者的病变标本,其中,男2例,女4例,年龄3~29岁,病变部位分别为耳垂4例、前胸1例及颈部1例。纳入标准:(1)患者无严重血液疾病、凝血功能异常及其他全身疾病;(2)符合瘢痕疙瘩的临床及病理诊断标准,病程>9个月,病灶持续增生;(3)瘢痕疙瘩及周围无感染和破溃;(4)患者均为初次治疗,未接受糖皮质激素类注射或放射治疗等其他任何治疗。排除标准:妊娠及哺乳期妇女。

    选择同期本院因其他疾病就诊的6例患者的正常皮肤组织标本,均取自需进行包皮环切术的男性患者,年龄4~35岁。纳入标准:(1)临床确诊为包皮过长和包茎患者;(2)术前已完善相关检查,包皮、阴茎头无感染;(3)无合并其他全身疾病。

    本研究通过新疆医科大学第一附属医院伦理委员会批准(K202303-03),所有患者对本次标本采集均知情并签署知情同意书。

 

     二、主要试剂与仪器

    DMEM培养基、磷酸缓冲液(phosphatic buffer solution,PBS)(Hyclone,美国);胎牛血清(fetal bovine serum,FBS)、EDTA-胰蛋白酶(Gibco,美国);CCK-8试剂盒(Bioss,美国);Erastin(MCE,美国);Ferrostatin-1(后文简称Fer-1)(Sigma,美国);丙二醛(malondialdehyde,MDA)检测试剂盒、组织铁含量检测试剂盒、活性氧(reactive oxygen species,ROS)检测试剂盒(索莱宝,中国);FerroOrange细胞内亚铁离子(Fe 2+)荧光探针(同仁化学,日本);兔源一抗GPx4(ab125066,Abcam,英国)、转铁蛋白受体1(transferrin receptor 1,TfR1)(10084-2-AP,Proteintech,中国)、溶质载体家族7成员11(recombinant solute carrier family 7, member 11,SLC7A11)(NB300-318ss,Novus,美国)、α平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)(ab5694,Abcam,英国)、Ⅰ型胶原(collagen Ⅰ,COL-1)(GTX26308,GeneTex,美国)、磷酸甘油醛脱氢酶(GAPDH)(2188R,Bioss,中国);羊抗兔二抗(bs-40295 G-HRP,Bioss,中国)、荧光二抗(ab150077,Abcam,英国)。Multiskan FC酶标仪(Thermo,美国);Western blotting凝胶成像分析系统(Bio-Rad,美国);倒置荧光显微镜、SP8激光共聚焦显微镜(Leica,德国)。

 

     三、方法

    (一)细胞培养与处理

    采用组织块法进行KFB原代培养,在无菌条件下获取手术切除的瘢痕疙瘩组织,清除组织表皮和脂肪后将组织修剪成1 cm 3大小的组织块,用含3%双抗(青霉素、链霉素)的PBS漂洗,以合适间距放入10 cm培养皿中,待组织块贴壁后加入8~10 ml完全培养基(含10%FBS+1%双抗)。镜下观察待细胞爬出并融合成片时移除组织块,用0.25%胰酶消化细胞传代培养。无菌条件下获取手术切除的包皮组织,使用DispaseⅡ分散酶去除表皮,采用同样的组织块培养法获取正常皮肤成纤维细胞(normal skin fibroblasts,NFB)。

    实验使用3~6代细胞,各组处理方式如下:NFB组,NFB饥饿(无血清培养基)处理12 h后,正常(完全培养基)培养24 h;control组,KFB饥饿处理12 h后,正常培养24 h;Erastin组,KFB饥饿处理12 h后,完全培养基中加入0.6 μmol/L Erastin处理24 h;Fer-1组,KFB饥饿处理12 h后,完全培养基中加入1 μmol/L Fer-1处理24 h;Erastin+Fer-1组,KFB饥饿处理12 h后,完全培养基中加入0.6 μmol/L Erastin、1 μmol/L Fer-1处理24 h。

    (二)CCK-8法检测不同药物浓度下的细胞增殖率

    取对数生长期的KFB,以6×10 3个/孔的细胞密度接种于96孔板中,24 h贴壁后弃培养基,PBS润洗2遍,对照组加入完全培养基100 μl,实验组分别用含有不同浓度Fer-1和Erastin的完全培养基换液,培养24 h后每孔加入10 μl CCK-8溶液,培养箱中孵育2 h,使用酶标仪测量450 nm波长处的吸光度值( A)。细胞增殖率=[( A 实验孔- A 空白孔)/( A 对照孔- A 空白孔)]×100%。

    (三)细胞划痕实验检测成纤维细胞的迁移能力

    取对数生长期的KFB和NFB,以2.5×10 5个/孔的细胞数量接种于6孔板中,用10 μl枪头垂直划痕,PBS缓慢冲洗2次,根据分组给予相应处理后置于37 ℃培养箱中24 h,每组设置3个复孔,在40倍光学显微镜下拍摄0和24 h照片。采用Image J软件测量划痕面积。迁移率=(0 h划痕面积-24 h划痕面积)/0 h划痕面积×100%。

    (四)细胞内ROS水平测定

    将各组细胞以5×10 3个/ml的密度均匀接种到激光共聚焦小皿中,37 ℃、5%CO 2培养箱中培养24 h。PBS润洗2次,每皿加入含有2.5 μmol/L DCFH-DA染料的完全培养基,置于37 ℃培养箱孵育30 min,PBS洗涤3次。使用激光共聚焦显微镜于488 nm激发波长下观察并采集图片,Image J软件测定各组平均荧光强度。

    (五)细胞中Fe 2+含量测定

    将各组细胞以5×10 3个/ml的密度均匀接种到激光共聚焦小皿中,37 ℃、5%CO 2培养箱中培养24 h。采用Hank’s平衡盐溶液(Hank’s balanced salt solution,HBSS)洗涤细胞3次,每皿加入1 ml浓度为1 μmol/L的FerroOrange工作液,37 ℃、5%CO 2培养箱孵育30 min。使用激光共聚焦显微镜于561 nm激发波长下观察并采集图片,Image J软件测定各组平均荧光强度。

    (六)细胞MDA水平测定

    收集细胞进行重悬,每组计数5×10 6个细胞加入1 ml提取液,超声波破碎细胞,4 ℃ 8 000× g离心10 min,取上清液置冰上待测。根据试剂盒说明书制备测定管及空白管,吸取上清液200 μl/孔加入96孔板中,使用酶标仪分别测定各组细胞在532 nm和600 nm处的吸光度值,计算MDA含量(nmol/mg)。

    (七)Western blotting检测相关蛋白表达

    将各组细胞以1×10 6个/孔的数量接种于6孔板中,分组处理24 h后收集细胞,加入RIPA裂解缓冲液提取总蛋白,定量后每孔加入20 μg蛋白,在10%十二烷基硫酸钠聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE)中分离,80~120 V,90 min;转膜:300 mA, 60~90 min;5%脱脂奶粉封闭2 h,分别加入TfR1(1∶2 000稀释)、GPx4(1∶5 000稀释)、SLC7A11(1∶1 000稀释)、α-SMA(1∶500稀释)、COL-1(1∶2 000稀释)、GAPDH(1∶5 000稀释)一抗4 ℃孵育过夜,TBST洗膜后室温孵育二抗(1∶10 000稀释) 2 h,ECL法显色,化学发光成像仪显影,Image J软件测定条带灰度值。蛋白相对表达量=目的蛋白灰度值/内参灰度值。

    取瘢痕疙瘩组织和正常皮肤真皮层组织样本各100 mg,加入1 ml裂解液进行冰浴匀浆,同法测定各样本中TfR1蛋白表达情况。

    (八)免疫荧光染色测定蛋白表达

    将各组KFB细胞以5×10 3个/ml的密度均匀接种到激光共聚焦小皿中,37 ℃、5%CO 2培养箱中培养24 h。4%多聚甲醛固定30 min,0.1%Triton-X100通透20 min,BSA封闭90 min;加入TfR1(1∶200稀释)、GPx4(1∶500稀释)一抗4 ℃孵育过夜,PBS清洗后加入荧光二抗(1∶500稀释),避光孵育2 h,洗去二抗加入DAPI孵育5 min。采用激光共聚焦显微镜,于488 nm激发波长下观察荧光染色情况,Image J软件测定各组平均荧光强度。

    (九)瘢痕疙瘩与正常皮肤真皮层中铁含量测定

    每个样本取100 mg组织加入1 ml提取液进行冰浴匀浆,4 ℃下4 000× g离心10 min,取上清。根据试剂盒说明书加入各试剂,每组吸取200 μl无机相加入96孔板中,使用酶标仪于520 nm立即测定吸光度值,计算组织铁含量(μg/g)。

 

    四、统计学方法

    采用GraphPad Prism 9.0统计软件进行数据分析,计量资料数据用x ± s表示,2组间比较采用独立样本 t检验,多组间比较采用单因素方差分析,两两比较采用LSD- t检验。P<0.05为差异有统计学意义。

 

结   果

 

    一、瘢痕疙瘩和正常皮肤组织中铁含量比较

    ......

 


版权声明:本网站转载仅为科普分享,无盈利目的,如有侵权请联系网站删除,文章版权归原作者所有。

SRT的优势

除了消除手术后感染和复发的风险外,SRT-100还为患者和医生提供安全有效的治疗选择等多种优势,包括:

  1. 超过95%以上的临床治愈率
  2. 无麻醉,切口,出血,缝合或疼痛
  3. 正常生活不受限制
  4. 不会形成明显的疤痕恢复更好
  5. 一次到位无需术后重建手术
浅放治疗设备采购咨询
电微同号:15065310121